1,201 research outputs found

    Dynamic melting of confined vortex matter

    Get PDF
    We study {\em dynamic} melting of confined vortex matter moving in disordered, mesoscopic channels by mode-locking experiments. The dynamic melting transition, characterized by a collapse of the mode-locking effect, strongly depends on the frequency, i.e. on the average velocity of the vortices. The associated dynamic ordering velocity diverges upon approaching the equilibrium melting line Tm,e(B)T_{m,e}(B) as vc(Tm,eT)1v_c \sim (T_{m,e}-T)^{-1}. The data provide the first direct evidence for velocity dependent melting and show that the phenomenon also takes place in a system under disordered confinement. \pacs{74.25.Qt,83.50.Ha,64.70.Dv,64.60.Ht}Comment: Some small changes have been made. 4 pages, 4 figures included. Accepted for publication in Phys. Rev. Let

    Vortex lattice dynamics in a-NbGe detected by mode-locking experiments

    Full text link
    We observed mode-locking (ML) of rf-dc driven vortex arrays in a superconducting weak pinning a-NbGe film. The ML voltage shows the expected scaling VfBV\propto f\sqrt{B} with ff the rf-frequency and BB the magnetic field. For large dc-velocity (corresponding to a large ML frequency), the ML current step width exhibits a squared Bessel function dependence on the rf-amplitude as predicted for ML of a lattice moving elastically through a random potential.Comment: 2 pages, 2 figures. Contribution to M2S-HTSC Ri

    Peak effect and dynamic melting of vortex matter in NbSe2_2 crystals

    Get PDF
    We present a mode locking (ML) phenomenon of vortex matter observed around the peak effect regime of 2H-NbSe2_2 pure single crystals. The ML features allow us not only to trace how the shear rigidity of driven vortices persists on approaching the second critical field, but also to demonstrate a dynamic melting transition of driven vortices at a given velocity. We observe the velocity dependent melting signatures in the peak effect regime, which reveal a crossover between the disorder-induced transition at small velocity and the thermally induced transition at large velocity. This uncovers the relationship between the peak effect and the thermal melting.Comment: To appear in Physical Review Lette

    Dynamic ordering of driven vortex matter in the peak effect regime of amorphous MoGe films and 2H-NbSe2 crystals

    Get PDF
    Dynamic ordering of driven vortex matter has been investigated in the peak effect regime of both amorphous MoGe films and 2H-NbSe2 crystals by mode locking (ML) and dc transport measurements. ML features allow us to trace how the shear rigidity of driven vortices evolves with the average velocity. Determining the onset of ML resonance in different magnetic fields and/or temperatures, we find that the dynamic ordering frequency (velocity) exhibits a striking divergence in the higher part of the peak effect regime. Interestingly, this phenomenon is accompanied by a pronounced peak of dynamic critical current. Mapping out field-temperature phase diagrams, we find that divergent points follow well the thermodynamic melting curve of the ideal vortex lattice over wide field and/or temperature ranges. These findings provide a link between the dynamic and static melting phenomena which can be distinguished from the disorder induced peak effect.Comment: 9 pages, 6 figure

    Angular Momentum Accretion onto a Gas Giant Planet

    Full text link
    We investigate the accretion of angular momentum onto a protoplanet system using three-dimensional hydrodynamical simulations. We consider a local region around a protoplanet in a protoplanetary disk with sufficient spatial resolution. We describe the structure of the gas flow onto and around the protoplanet in detail. We find that the gas flows onto the protoplanet system in the vertical direction crossing the shock front near the Hill radius of the protoplanet, which is qualitatively different from the picture established by two-dimensional simulations. The specific angular momentum of the gas accreted by the protoplanet system increases with the protoplanet mass. At Jovian orbit, when the protoplanet mass M_p is M_p < 1 M_J, where M_J is Jovian mass, the specific angular momentum increases as j \propto M_p. On the other hand, it increases as j \propto M_p^2/3 when the protoplanet mass is M_p > 1 M_J. The stronger dependence of the specific angular momentum on the protoplanet mass for M_p < 1 M_J is due to thermal pressure of the gas. The estimated total angular momentum of a system of a gas giant planet and a circumplanetary disk is two-orders of magnitude larger than those of the present gas giant planets in the solar system. A large fraction of the total angular momentum contributes to the formation of the circumplanetary disk. We also discuss the satellite formation from the circumplanetary disk.Comment: 39 pages,13 figures, Submitted to ApJ, For high resolution figures see http://www2.scphys.kyoto-u.ac.jp/~machidam/jupiter2/ms08jan22.pd

    The formation of Uranus and Neptune among Jupiter and Saturn

    Get PDF
    The outer giant planets, Uranus and Neptune, pose a challenge to theories of planet formation. They exist in a region of the Solar System where long dynamical timescales and a low primordial density of material would have conspired to make the formation of such large bodies (\sim 15 and 17 times as massive as the Earth, respectively) very difficult. Previously, we proposed a model which addresses this problem: Instead of forming in the trans-Saturnian region, Uranus and Neptune underwent most of their growth among proto-Jupiter and -Saturn, were scattered outward when Jupiter acquired its massive gas envelope, and subsequently evolved toward their present orbits. We present the results of additional numerical simulations, which further demonstrate that the model readily produces analogues to our Solar System for a wide range of initial conditions. We also find that this mechanism may partly account for the high orbital inclinations observed in the Kuiper belt.Comment: Submitted to AJ; 38 pages, 16 figure

    Toward a Deterministic Model of Planetary Formation VI: Dynamical Interaction and Coagulation of Multiple Rocky Embryos and Super-Earth Systems around Solar Type Stars

    Full text link
    Radial velocity and transit surveys indicate that solar-type stars bear super-Earths, with mass and period up to ~ 20 M_E and a few months, are more common than those with Jupiter-mass gas giants. In many cases, these super-Earths are members of multiple-planet systems in which their mutual dynamical interaction has influenced their formation and evolution. In this paper, we modify an existing numerical population synthesis scheme to take into account protoplanetary embryos' interaction with their evolving natal gaseous disk, as well as their close scatterings and resonant interaction with each other. We show that it is possible for a group of compact embryos to emerge interior to the ice line, grow, migrate, and congregate into closely-packed convoys which stall in the proximity of their host stars. After the disk-gas depletion, they undergo orbit crossing, close scattering, and giant impacts to form multiple rocky Earths or super-Earths in non-resonant orbits around ~ 0.1AU with moderate eccentricities of ~0.01-0.1. We suggest that most refractory super-Earths with period in the range of a few days to weeks may have formed through this process. These super-Earths differ from Neptune-like ice giants by their compact sizes and lack of a substantial gaseous envelope.Comment: 37 pages, 10 figures, accepted for publication in Ap

    Habitable Climates: The Influence of Eccentricity

    Full text link
    In the outer regions of the habitable zone, the risk of transitioning into a globally frozen "snowball" state poses a threat to the habitability of planets with the capacity to host water-based life. We use a one-dimensional energy balance climate model (EBM) to examine how obliquity, spin rate, orbital eccentricity, and ocean coverage might influence the onset of such a snowball state. For an exoplanet, these parameters may be strikingly different from the values observed for Earth. Since, for constant semimajor axis, the annual mean stellar irradiation scales with (1-e^2)^(-1/2), one might expect the greatest habitable semimajor axis (for fixed atmospheric composition) to scale as (1-e^2)^(-1/4). We find that this standard ansatz provides a reasonable lower bound on the outer boundary of the habitable zone, but the influence of obliquity and ocean fraction can be profound in the context of planets on eccentric orbits. For planets with eccentricity 0.5, our EBM suggests that the greatest habitable semimajor axis can vary by more than 0.8 AU (78%!) depending on obliquity, with higher obliquity worlds generally more stable against snowball transitions. One might also expect that the long winter at an eccentric planet's apoastron would render it more susceptible to global freezing. Our models suggest that this is not a significant risk for Earth-like planets around Sun-like stars since such planets are buffered by the thermal inertia provided by oceans covering at least 10% of their surface. Since planets on eccentric orbits spend much of their year particularly far from the star, such worlds might turn out to be especially good targets for direct observations with missions such as TPF-Darwin. Nevertheless, the extreme temperature variations achieved on highly eccentric exo-Earths raise questions about the adaptability of life to marginally or transiently habitable conditions.Comment: References added, text and figures updated, accepted by Ap
    corecore